Inhibitory and excitatory perigenital-to-bladder spinal reflexes in the cat.

نویسندگان

  • Changfeng Tai
  • Bing Shen
  • Jicheng Wang
  • Michael B Chancellor
  • James R Roppolo
  • William C de Groat
چکیده

This study revealed that in awake chronic spinal cord-injured (SCI) cats reflexes from perigenital skin area to the bladder can be either inhibitory or excitatory. Electrical perigenital stimulation at frequencies between 5 and 7 Hz significantly inhibited large-amplitude rhythmic reflex bladder activity, whereas frequencies between 20 and 40 Hz induced large-amplitude bladder contractions even at low bladder volumes when reflex bladder activity was absent. Both inhibitory and excitatory effects were enhanced as the stimulation intensity increased (5-30 V, 0.2-ms pulse width). During cystometrograms, the inhibitory stimulation (7 Hz) significantly increased the micturition volume threshold 35 +/- 13% above the control volume, while the excitatory stimulation (30 Hz) significantly reduced the threshold 21 +/- 3%. Mechanical perigenital stimulation applied by repeated light stroking of the perigenital skin with a cotton swab only induced an excitatory effect on the bladder. Both electrical and mechanical perigenital stimuli induced large-amplitude (>30 cm H(2)O) bladder contractions that were relatively consistent over a range of bladder volumes (10-90% of the capacity). However, the excitatory electrical stimulation only induced bladder contractions lasting on average 42.2 +/- 3.9 s, but the mechanical stimulation induced bladder contractions that lasted as long as the stimulation continued (2-3 min). Excitatory electrical or mechanical perigenital stimulation also induced poststimulus voiding. The ability to either inhibit or excite the bladder by noninvasive methods could significantly transform the current clinical management of bladder function after SCI.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite element modeling and in vivo analysis of electrode configurations for selective stimulation of pudendal afferent fibers

BACKGROUND Intraurethral electrical stimulation (IES) of pudendal afferent nerve fibers can evoke both excitatory and inhibitory bladder reflexes in cats. These pudendovesical reflexes are a potential substrate for restoring bladder function in persons with spinal cord injury or other neurological disorders. However, the complex distribution of pudendal afferent fibers along the lower urinary t...

متن کامل

GABAergic system for Ptychodiscus brevis toxin-induced depression of synaptic transmission elicited in isolated spinal cord from neonatal rats

The involvement of inhibitory transmitters for Ptychodiscus brevis toxin (PbTx)-induced depression of spinal synaptic transmission in neonatal rats was investigated. Stimulation of a dorsal root evoked monosynaptic reflex (MSR) and polysynaptic reflex (PSR) potentials in the segmental ventral root. The PbTx depressed the reflexes in a concentration-dependent manner and this depression was block...

متن کامل

GABAergic system for Ptychodiscus brevis toxin-induced depression of synaptic transmission elicited in isolated spinal cord from neonatal rats

The involvement of inhibitory transmitters for Ptychodiscus brevis toxin (PbTx)-induced depression of spinal synaptic transmission in neonatal rats was investigated. Stimulation of a dorsal root evoked monosynaptic reflex (MSR) and polysynaptic reflex (PSR) potentials in the segmental ventral root. The PbTx depressed the reflexes in a concentration-dependent manner and this depression was block...

متن کامل

Receptor mechanisms underlying heterogenic reflexes among the triceps surae muscles of the cat.

The soleus (S), medial gastrocnemius (MG), and lateral gastrocnemius (LG) muscles of the cat are interlinked by rapid spinal reflex pathways. In the decerebrate state, these heterogenic reflexes are either excitatory and length dependent or inhibitory and force dependent. Mechanographic analysis was used to obtain additional evidence that the muscle spindle primary ending and the Golgi tendon o...

متن کامل

Central nervous control of micturition and urine storage.

The micturition reflex is one of the autonomic reflexes, but the release of urine is regulated by voluntary neural mechanisms that involve centers in the brain and spinal cord. The micturition reflex is a bladder-to-bladder contraction reflex for which the reflex center is located in the rostral pontine tegmentum (pontine micturition center: PMC). There are two afferent pathways from the bladde...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 294 3  شماره 

صفحات  -

تاریخ انتشار 2008